You might be interested in calculating the value of ₹1 for the year 1988. Or calculate the value of ₹1 for the year 1993
.₹1 in 1983 is worth ₹19.32 today.
The value of ₹1 from 1983 to 2022
₹1 in 1983 has the purchasing power of about ₹19.32 today, a ₹18.32 increase in 39 years. Between 1983 and today, the rupee experienced an average annual inflation rate of 7.89%, resulting in a cumulative price increase of 1831.97%.
According to the Bureau of Labor Statistics consumer price index, today's prices are several times higher than the average price since 1983.
In 1983, the inflation rate was 11.8681%. Inflation is now 6.08% higher than it was last year. If this figure holds true, ₹1 today will be worth ₹7.08 next year in purchasing power.
Inflation from 1983 to 2022
Summary | Value |
---|---|
Cumulative price change (from 1983 to today) | 1831.97% |
Average inflation rate (from 1983 to today) | 7.89% |
Converted amount | ₹19.32 |
Price Difference | ₹18.32 |
CPI in 1983 | 478.7 |
CPI in 2022 | 9248.3472 |
Inflation in 1983 | 11.8681% |
Inflation in 2022 | 6.08% |
₹1 in 1983 | ₹19.32 in 2022 |
Buying power of ₹1 in 1983
If you had ₹1 in your hand in 1983, its adjusted value for inflation today would be ₹19.32. Put another way, you would need ₹19.32 to beat the rising inflation. When ₹1 becomes equivalent to ₹19.32 over time, the "real value" of a single Indian rupee decreases. In other words, a rupee will pay for fewer items at the store.
This effect explains how inflation gradually erodes the value of a rupee. By calculating the value in 1983 rupees, it's evident how ₹1 loses its worth over 39 years.
Rupee inflation for ₹1 from 1983 to 2022
The below tabular column shows the effect of inflation on ₹1 in the year 1983 to the year 1983.
Year | Rupee Value | Inflation Rate |
---|---|---|
1983 | 1 | 11.8681% |
1984 | 1.08 | 8.32% |
1985 | 1.14 | 5.56% |
1986 | 1.24 | 8.73% |
1987 | 1.35 | 8.80% |
1988 | 1.48 | 9.38% |
1989 | 1.58 | 7.07% |
1990 | 1.73 | 8.97% |
1991 | 1.97 | 13.87% |
1992 | 2.2 | 11.79% |
1993 | 2.34 | 6.33% |
1994 | 2.58 | 10.25% |
1995 | 2.84 | 10.22% |
1996 | 3.09 | 8.9772% |
1997 | 3.32 | 7.1643% |
1998 | 3.75 | 13.2308% |
1999 | 3.93 | 4.6698% |
2000 | 4.09 | 4.0094% |
2001 | 4.24 | 3.77% |
2002 | 4.42 | 4.30% |
2003 | 4.59 | 3.81% |
2004 | 4.77 | 3.7673% |
2005 | 4.97 | 4.2463% |
2006 | 5.26 | 5.7965% |
2007 | 5.59 | 6.3729% |
2008 | 6.06 | 8.3493% |
2009 | 6.72 | -0.36% |
2010 | 7.52 | 1.64% |
2011 | 8.19 | 8.91% |
2012 | 8.97 | 9.47% |
2013 | 9.87 | 10.01% |
2014 | 10.53 | 6.66% |
2015 | 11.04 | 4.907% |
2016 | 11.59 | 4.95% |
2017 | 11.97 | 3.33% |
2018 | 12.45 | 3.94% |
2019 | 12.91 | 3.73% |
2020 | 13.77 | 6.62% |
2021 | 14.47 | 5.13% |
2022 | 15.35 | 6.08% |
Conversion of 1983 rupees to today's price
Based on the 1831.97% change in prices, the following 1983 amounts are shown in today's rupees:
Initial value | Today value |
---|---|
₹1 rupee in 1983 | ₹19.32 rupees today |
₹5 rupees in 1983 | ₹96.6 rupees today |
₹10 rupees in 1983 | ₹193.2 rupees today |
₹50 rupees in 1983 | ₹965.99 rupees today |
₹100 rupees in 1983 | ₹1931.97 rupees today |
₹500 rupees in 1983 | ₹9659.86 rupees today |
₹1,000 rupees in 1983 | ₹19319.71 rupees today |
₹5,000 rupees in 1983 | ₹96598.57 rupees today |
₹10,000 rupees in 1983 | ₹193197.14 rupees today |
₹50,000 rupees in 1983 | ₹965985.71 rupees today |
₹100,000 rupees in 1983 | ₹1931971.42 rupees today |
₹500,000 rupees in 1983 | ₹9659857.11 rupees today |
₹1,000,000 rupees in 1983 | ₹19319714.23 rupees today |
How to calculate the inflated value of ₹1 in 1983
To calculate the change in value between 1983 and today, we use the following inflation rate formula:
CPI Today / CPI in 1983 x Rupee Value in 1983 = Current Rupee Value
By plugging the values into the formula above, we get:
9248.3472/ 478.7 x ₹1 = ₹19.32
To buy the same product that you could buy for ₹1 in 1983, you would need ₹19.32 in 2022.
To calculate the cumulative or total inflation rate in the past 39 years between 1983 and 2022, we use the following formula:
CPI in 2022 - CPI in 1983 / CPI in 1983 x 100 = Cumulative Inflation Rate
By inserting the values to this equation, we get:
( 9248.3472 - 478.7 / 478.7) x 100 = 1831.97%
Alternate method to calculate today's value of money after inflation - Using compound interest formula
Given that money changes over time due to inflation, which acts as compound interest, we can use the following formula:
FV = PV (1+i/100)^n
where,
- FV = Future value
- PV = Present value
- i: Average interest rate (inflation)
- n: Number of times the interest is compounded (i.e. # of years)
The future value in this case represents the amount obtained after applying the inflation rate to our initial value. In other words, it indicates how much ₹1 is worth today. We have 39 years between 2022 and 1983. The average inflation rate was 7.8883066870151%.
Plugging in the values into the formula, we get:
1 (1+ % 7.89/ 100 ) ^ 39 = ₹19.32